AFM Probes  »  
 Request a quote (RFQ)
Order Code / Price*
Quantity
CDT-CONTR-10 Box of 10 AFM Probes
1759.00 USD
CDT-CONTR-20 Box of 20 AFM Probes
3148.00 USD
Your volume discount is 370.00 USD or 10.50%
CDT-CONTR-50 Box of 50 AFM Probes
6945.00 USD
Your volume discount is 1850.00 USD or 21.00%
Price shown as ex-works and subjected to shipping charges, insurance, local VAT and custom duties respectively where applicable

CDT-CONTR

Diamond Coated, Conductive Contact Mode AFM Probe

Manufacturer: NANOSENSORS

Coating: Diamond,Conductive Diamond
AFM tip shape: Standard
AFM Cantilever
F 20 kHz
C 0.5 N/m
L 450 µm
*nominal values
Applications
How to optimize AFM scan parameters gear icon

NANOSENSORS™ CDT-CONTR AFM probes are designed for contact mode (repulsive mode) SPM imaging.

For applications that require a wear resistant and an electrically conductive AFM tip we recommend this type. Some applications are Tunneling AFM and Scanning Capacitance Microscopy (SCM). The CDT Diamond Coating is highly doped and the total resistance measured in contact to a platinium surface is < 10 kOhm.

The typical macroscopic AFM tip radius of curvature is between 100 and 200 nm. Nanoroughness in the 10 nm regime improves the resolution on flat surfaces.

The AFM probe offers unique features:

  • real diamond coating, highly doped
  • high mechanical Q-factor for high sensitivity

This AFM probe features alignment grooves on the back side of the holder chip.

The reflective coating is an approximately 30 nm thick aluminum coating on the detector side of the AFM cantilever which enhances the reflectivity of the laser beam by a factor of about 2.5. Furthermore it prevents light from interfering within the AFM cantilever. As the coating is nearly stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.
AFM Tip:

  • AFM Cantilever:
  • Beam
  • 0.5 N/m (0.1 - 1.7 N/m)*
  • 20 kHz (11 - 29 kHz)*
  • 450 µm (440 - 460 µm)*
  • 50 µm (42.5 - 57.5 µm)*
  • 2 µm ( 1 - 3 µm)*
  • * guaranteed range
    Interested in learning about how this AFM probe has been used by fellow researchers?
    Loading
    nanosensors-logo
    nanoworld-logo
    budgetsensors-logo
    mikromasch-logo
    opus-logo
    sqube-logo
    nanotools-logo